Multidrug resistant *E. coli*: characterization of antimicrobial resistance and virulence genes with molecular epidemiologic approach

PhD dissertation theses

Annamária (Ama) Szmolka

Veterinary Medical Research Institute
of Hungarian Academy of Sciences

2011
Szent István University
Postgraduate School of Veterinary Science

Supervisor:

....................
Béla Nagy, DVM, DSc., member of the Hungarian academy of Sciences
Veterinary Medical Research Institute, Hung. Acad. Sci., Budapest

Members of the supervising committee

....................
Tamás Tuboly, DVM, PhD
Szent István University, Budapest

....................
Péter Zsolt Fekete, PhD
Veterinary Medical Research Institute, Hung. Acad. Sci., Budapest

....................
Ariel Imre, PhD
Veterinary Medical Research Institute, Hung. Acad. Sci., Budapest
Introduction

The main topic of the PhD dissertation is covered by three units structured on the simultaneous characterization of antimicrobial resistance and virulence genes of *E. coli* - isolated from different parts of the food chain - in order to answer the same question: whether the widespread use of antimicrobials in animals and humans could also lead to increased dissemination of virulence genes.

Nowadays there is an increasing need for simultaneous detection of antimicrobial resistance pheno-/genotypes and virulence profiles, and for characterization of potential genetic vectors of multiple antimicrobial resistance and virulence determinants in identifying emerging *E. coli* genotypes of potentially increased importance for animals and/or humans. In contrast to pathogenic (clinical) strains, there is a paucity of information regarding the associations between antimicrobial resistance and virulence genes in commensal *E. coli* strains from animals and humans. Furthermore, the molecular epidemiologic aspect of such data collection and -analysis is especially lacking.

Based on the above approach, first we aimed to provide a comprehensive description of antimicrobial resistance and virulence profiles of porcine post-weaning enterotoxigenic *E. coli* (ETEC) strains, representing three middle-European neighbouring countries: Hungary, Austria and the Czech Republic. Characterization of tetracycline resistance plasmids was also attempted, with special regard to those responsible for the transfer of tetracycline resistance genes and to further mobile genetic elements contained.

In the second part of these studies we aimed to review the influence of gentamicin - one of the most frequently used aminoglycoside antibiotic in treating animal and human infections - on the possible simultaneous development of multiple resistance and virulence traits. Therefore, the main objective of this part of the study was to provide a comparative characterization of antimicrobial resistance and virulence genotypes of gentamicin resistant clinical and commensal *E. coli* strains from food animals and humans, in order to enhance our understanding of the zoonotic significance of multidrug resistant (MDR) *E. coli*.

Finally, regarding the increasing concern of plasmid-mediated quinolone resistance not only in human but also in food animals, and the lack of data related to porcine *E. coli* from Europe, we aimed the identification and characterization of *qnrS1* gene in porcine *E. coli* strains derived from a surveillance study on MDR *E. coli* in large piggeries of two, traditionally pork-producing countries such as Romania and Hungary.
Objectives

Based on the above statements the main objectives of the dissertation are clustered in the topics of tetracyclin-, gentamicin- and plasmid-mediated quinolone resistance, and could be defined as follows:

1. Unravelling the role of tet(A) tetracycline resistance plasmids in the transfer of antimicrobial resistance (and virulence) genes in multidrug resistant enterotoxigenic E. coli (ETEC) strains isolated from pigs with post-weaning diarrhea.

2. Characterization of antimicrobial resistance and virulence genotypes and of potential associations among and between antimicrobial resistance and virulence genes in gentamicin resistant clinical and commensal E. coli strains isolated from food animals and humans.

3. Identification of plasmid-mediated quinolone resistance genes and characterization of corresponding plasmids in multidrug resistant commensal E. coli strains isolated from feces of healthy pigs.
Materials and methods

Characterization of tet(A) plasmids from multidrug resistant porcine enterotoxigenic E. coli (ETEC) strains

ETEC strains studied here were isolated from cases of porcine post-weaning diarrhea, and the majority of them represented three middle-European neighbouring countries: Hungary (n=16), Austria (n=34) and the Czech Republic (n=17). Further 20 ETEC strains were derived from the USA as well. The antimicrobial resistance phenotype was tested by disc diffusion. ETEC strains phenotypically resistant to tetracycline were subjected to tet gene typing, using PCR primers specific to common tet genes of Enterobacteriaceae.

In order to characterize plasmids responsible for the transfer of tetracycline resistance and of ETEC-specific virulence genes (estA, estB, elt, f18, k88), a total of 8 tet(A) és 12 tet(B) F18+ ETEC strains were selected for conjugational plasmid transfer. Parental and transconjugant strains representing successful tet(A) and tet(B) transfers were selected for plasmid profile analysis and for PCR identification of antimicrobial resistance and virulence genes.

Due to the lack of data regarding plasmids carrying the tet(A) gene in F18+ ETEC strains, further analyses were restricted to two tet(A)-positive monoplasmidic transconjugant strains (2172/11 and 11732/11), isolated in Hungary and the Czech Republic respectively. Determination of incompatibility (Inc) group of tet(A) plasmids was carried out by PCR-based replicon typing (PBRT). Finally, the variable region of the class 1 integron identified in the Hungarian strain was completely sequenced and deposited in the GenBank under accession number JQ313793.

Comparative antimicrobial resistance and virulence genotyping of gentamicin resistant commensal and clinical E. coli strains from food animals and humans

In line with the national antimicrobial resistance monitoring program, a total of 3477 poultry, 1861 porcine and 1794 bovine E. coli strains were tested for antimicrobial resistance phenotype in the period between 2004 and 2008. In this study, 12 poultry, 13 porcine and 13 bovine gentamicin resistant (GenR) E. coli strains were selected from the above larger E. coli collection for simultaneous characterization of their antimicrobial resistance and virulence genotypes. As a comparison to food animal isolates, 12 GenR E. coli strains from humans were also included.

The gentamicin resistant E. coli strains were categorized based on the host species and their clinical background: “clinical” strains of E. coli were derived from diseased organs of
sick or dead animals or of clinically ill human patients, while the isolates from animal products or from normal feces were defined as “commensals”.

Screening for 62 antimicrobial resistance genes, conferring resistance to clinically important antimicrobials and for types of integrases, was performed using a recently developed “Identibac-AMR” PCR-microarray system (ArrayTube™ AMR05). In addition, the identification of 69 virulence genes (plus several subtypes) was undertaken using a similar ArrayTube™ Ec03 PCR-microarray system specific to major virulence gene groups of E. coli. Finally, the detection of possible associations among and between antimicrobial resistance and virulence genes was performed by Pearson’s correlation analysis.

Characterization of qnrS1 plasmids in porcine commensal E coli strains

Porcine E. coli strains from this study were isolated from the feces of healthy animals, as part of an international surveillance project on molecular characterization of MDR enteric E. coli from piglets of one Romanian and one Hungarian large piggery.

The qnrS gene was identified in 17 of the MDR E. coli strains tested, and all were derived from the Romanian pig farm. Six of the qnrS strains were randomly selected for further pheno- and genotyping (including the determination of the qnrS gene variant) and for plasmid transfer studies. The antibiotic resistance and genotype of the 6 strains was determined using the AMR05 and Ec03 PCR microarray systems mentioned above. The clonal relation of the six qnrS1 E. coli strains derived from the same Romanian farm was established by multilocus sequence typing (MLST).

In order to characterize quinolone resistance plasmids carrying the qnrS1 gene, conjugation experiments were performed. Parental and transconjugant strains were subjected to plasmid profile analysis followed by the determination of the plasmid type by PCR-based replicon typing (PBRT). The localization of the qnrS1 gene on IncN plasmid was confirmed by Southern blot hybridization using IncN and qnrS1 probes. IncN plasmids of the porcine qnrS1 transconjugants were further characterized by restriction fragment length polymorphism (RFLP), and their restriction profiles were compared with that of the IncN plasmids of human Salmonella Kentucky strains used as qnrS1 IncN plasmid controls.

Finally, the genetic environment of the qnrS1 gene was analysed, and the nucleotide sequence of 3.6 kb qnrS1 insert derived from the strain Ec48-1 has been deposited in the GenBank database under accession number JN157839.
Results

Antimicrobial resistance phenotype and tetracycline resistance genes of porcine ETEC strains with different geographical background

Regardless of the geographic origin, majority of the ETEC strains studied shared a common MDR “backbone”, most frequently being resistant to sulfamethoxazole (91%), tetracycline (84%) and streptomycin (80%). In general, the prevalence of resistance was lower in ETEC strains from the middle-European countries, as compared to those from The USA.

The tetracyclin resistant phenotype was most frequently due to the presence of the tet(B) gene (38%), when tet(A) was identified in 26% of the isolates. The prevalence of different tet gene types and patterns varied among strains with different geographical background.

Characterization of Incl1 plasmids involved in the transfer of tet(A) gene in porcine ETEC strains

The conjugal plasmid transfer of F18+ ETEC strains from Hungary (Ec2172) and from the Czech Republic (11732) resulted in two tet(A)-positive monoplasmidic transconjugant strains: 2172/11 and 11732/71 respectively, where the characterization of tet(A) plasmids of ~138 and 106 kb was performed.

Plasmid replicon typing resulted in the identification of Incl1 type plasmids in both strains. Based on the lack of ETEC-specific virulence genes tested here, the above plasmids could be regarded as resistance (i.e. multidrug resistance) plasmids only. According to this, the detection of antimicrobial resistance genes revealed that in addition to the tet(A) gene, Incl1 plasmids were involved in the co-transfer of aadA1 (streptomycin/spectinomycin) and strA (streptomycin) genes in the Hungarian strain, while in the Czech 11732 strain we found tet(A) associated to the chloramphenicol resistance gene catA1.

In the Hungarian F18+ ETEC strain, the aadA1 gene was part of a typical (qacEΔ1′/sul1′) class 1 integron, although its estX-aadA1 cassette array is quite unusual, encoding resistance to streptothricin and streptomycin/spectinomycin respectively.

Antimicrobial resistance pheno- and genotype of gentamicin resistant clinical and commensal E. coli strains from food animals and humans

Regardless of the host species and clinical background, most of these E. coli isolates proved to be resistant to tetracycline (84%), ampicillin (82%) and sulfamethoxazole (80%) beside gentamicin. Regarding the prevalence of resistance to third-generation cephalosporins, with significance in human therapy, only 2 animal (bovine) E. coli strains
demonstrated resistance to cefotaxime and ceftazidime, whereas resistance to these two drugs among human strains was relatively high (67% and 25%, respectively).

In general, our strains were characterized by large diversity of resistance genotypes. In harmony with the phenotype data, the most common antimicrobial resistance genes associated with GenR E. coli strains were the \textit{bla}_{TEM} (ampicillin), \textit{tet}(A) (tetracykin), \textit{strB} (streptomycin) and \textit{sul1} (sulfamethoxazole) genes. Although the prevalence of the above genes was not related to the clinical background, the number of antimicrobial resistance genes as a whole was significantly higher (p=0.030) in clinical strains as compared to commensal \textit{E. coli} isolates.

Some genes conferring resistance to aminoglycosides (\textit{aac}(3)-I, \textit{ant}(2")-Ia and \textit{aac}(6')-Ib) and phenicols (\textit{catB3}) were almost exclusively found among human isolates.

\textbf{Virulence genotypes of gentamicin resistant \textit{E. coli} strains, with some associations among and between antimicrobial resistance and virulence genes}

In harmony with data on resistance genotypes, a large variety of virulence patterns have been identified among GenR \textit{E. coli} strains tested. The most common virulence gene detected in all groups of \textit{E. coli} was the increased serum survival gene \textit{iss} (in 70% of the isolates), being equally distributed in clinical and commensal strains. The majority of the virulence genes were rarely represented and distributed regardless of the clinical background.

A few strong correlations among and between antimicrobial resistance and virulence genes could be defined. With the exception of the association between the trimethoprim gene \textit{dfrA17} and \textit{aadA4} for streptomycin resistance, which was not related to the host species, other associations of genes were found to be specific to certain hosts. Accordingly, resistance genes \textit{catB3}, \textit{aac(6')-Ib} and \textit{bla}_{CTX-M-1} revealed strong correlation with the SPATE gene \textit{sat} in human strains, whereas the co-existence of the tetracycline resistance gene \textit{tet}(A) and the virulence genes \textit{iroN} and \textit{iss} were detected in \textit{E. coli} strains of poultry origin.

\textit{Identification of the \textit{qnrS1} gene and the clonal relation of the porcine \textit{qnrS1} \textit{E. coli} strains}

In our study, the presence of the plasmid-mediated quinolone resistance gene \textit{qnrS1} was identified and characterized in 6 \textit{E. coli} strains from healthy piglets of a Romanian farm, representing the first report on plasmid-mediated quinolone resistance in porcine \textit{E. coli} in Europe. Despite being isolated from the same pig farm, commensal \textit{E. coli} strains from this study there were three different multilocus sequence types (STs) represented: ST48, ST206, and ST542, respectively.
Antimicrobial pheno- and genotype and virulence profile of the qnrS1 E. coli strains

Despite divergent clonality, the six commensal qnrS1 E. coli strains showed highly similar antimicrobial resistance phenotypes: in addition to gentamicin resistance, all strains showed resistance to other aminoglycosides as well (kanamycin, streptomycin), but ampicillin and tetracycline resistances were also common. Results of PCR-microarray studies on antimicrobial resistance genes were fully in harmony with the resistance phenotype, detecting the presence of genes for spectinomycin/streptomycin (aadA1, strA, strB), ampicillin (bla_{TEM-1}), and tetracycline (tet(A)) resistance.

In contrast to the results on antimicrobial resistance genotype, few virulence genes were detected in two qnrS1 E. coli strains only, although they represented different virulence mechanisms.

Characterization of the porcine qnrS1 IncN plasmids, and the genetic environment of the qnrS1 gene

Plasmid replicon typing resulted in the identification of IncN plasmids of ~70 kb as responsible for the transfer of the qnrS1 gene in porcine commensal E. coli strains studied. RFLP results indicated that IncN plasmids from the six porcine E. coli strains were very similar in their restriction patterns, but differed from those found in qnrS1 transformants of human Salmonella Kentucky strains used as IncN plasmid control. PCR testing for antimicrobial resistance genes revealed that IncN plasmids were responsible for the co-transfer of aminoglycoside (aadA1, strA, strB), ampicillin (bla_{TEM-1}), and tetracycline resistance (tet(A)) genes in addition to the qnrS1 gene.

Sequence analysis of the 3.6 kb qnrS1 insert derived from the plasmid pEc48-1 of the transconjugant Ec48-1 revealed that both the up- and downstream regions of the qnrS1 gene showed 99% homology with the corresponding resistance region of the qnrS1 plasmid pINF5 (GenBank: AM234722) from a Salmonella Infantis strain isolated from chicken (Figure).
New scientific results and theses

The new scientific results and theses of the dissertation could be summarized as follows:

Related to the characterization of tet(A) plasmids from multidrug resistant porcine enterotoxigenic E. coli (ETEC) strains:

1. In addition to a former study of our group resulting in the complete sequencing of the pTC hybrid plasmid, as a first representant of tet(B)-type hybrid plasmids carrying enterotoxin genes, here we characterized the tet(A) plasmids of two F18⁺ ETEC strains isolated from Hungary and from the Czech Republic. As a result, the presence of Incl1 type resistance plasmids responsible for the co-transfer of the tet(A) gene and additional resistance determinants were demonstrated for the first time in F18⁺ ETEC strains.

2. Furthermore, the tet(A) Incl1 plasmid of the Hungarian strain carried a class 1 integron, with a variable region, quite unusual among porcine E. coli, being composed by estX-aadA1 gene cassettes encoding resistance to streptothricin and spectinomycin/streptomycin respectively.

Regarding the comparative antimicrobial resistance and virulence genotyping of gentamicin resistant clinical and commensal E. coli strains from food animals and humans:

3. We provide the first microarray-based systematic comparative genotyping on clinical and commensal E. coli from food animals and humans, suggesting their role as reservoirs of antimicrobial resistance and of virulence genes. Furthermore the co-existence and spread of some genes have been revealed.

4. Contrasting the general concept, some genes conferring resistance to aminoglycosides (aac(3)-I, ant(2”)-Ia and aac(6’)-Ib) and phenicols (catB3), being almost exclusively present among human isolates, confirmed the possibility for existence of human specific pools of these resistance determinants independent of food animal sources.

5. Here we point out that, the commensal E. coli strains from food animals are not only important indicators, but – in addition to pathogenic strains – through their numerous virulence and resistance genes, they could also be regarded as potential risk for human health.
Related to the characterization of *qnrS1* plasmids in porcine commensal *E. coli* strains:

6. We described three *qnrS1* porcine MLST clones, which have been previously identified as related mainly to humans, thereby they could be regarded as new clones among animal (ST542) or porcine (ST48, ST206) *E. coli* isolates. Furthermore we provide the first characterization of antimicrobial resistance and virulence genotype of above MLST clones.

7. We also provide first characterization of *qnrS1* *E. coli* plasmids of porcine origin, reporting the presence of *qnrS1* IncN plasmids in food animals, as being the first occurrence of plasmid-mediated quinolone resistance in porcine commensal *E. coli* strains from Europe.

8. The genetic environment of the *qnrS1* gene showed 99% homology with the corresponding resistance region – related to Tn3 – of the *qnrS1* plasmid pINF5 from a *Salmonella* Infantis strain isolated from chicken, suggesting the possible transfer of the *qnrS1* gene between *E. coli* and *Salmonella* as a potential risk for human health. Thus our data indicate that in addition to poultry, pigs may also represent a reservoir for the dissemination of plasmid-mediated quinolone resistance gene *qnrS1*.
Publications and abstracts based on the results of the PhD dissertation

Research papers:

Conference abstracts:

Publications not directly related to the subject of the PhD dissertation

Research papers:

Conference abstracts:

Acknowledgements

I am grateful to the director and to the coworkers of the Veterinary Medical Research Institute of the Hungarian Academy of Sciences for their help and support.

My first thanks are due to my supervisor Béla Nagy, for helping me with his experience, knowledge and encouragement and for providing the intellectual and financial background required for this work. Further thanks are due to Péter Zsolt Fekete, Tamás Tuboly and especially for Ariel Imre, for supporing me by their useful ideas.

I thank to all coworkers of our research group: Márta Puruczki, Domonkos Sváb, István Tóth, for their patience and advices given during my PhD work. I am especially grateful to Erika Sajtós who provided an excellent technical support, and to Barbara Lestár as well, for helping me in the analysis of tet(A) plasmids.

I am also thankful to Muna Anjum, Alessandra Carattoli and Roberto La Ragione, who supervised and kindly helped me at different stages of the work, when international collaboration was needed. Further thanks to Erzsébet Adrián, Márton Barcsa, Miklós Füzi, Éva Kaszanyitzky and to Ákos Tóth for kindly providing us the E. coli strains. Many thanks are due also to Margit Király and Judit Pászti for the plasmid profile analysis and for their spirit of collaboration.

This work was supported by the EU FP6 NoE (EuroPathoGenomics, Contract No. 512061) and EU FP6 NoE (MedVetNet., WP29, Contract No. 506122) projects.